Abstract

In multivariate calibration problems, model performance is affected significantly by the calibration samples used during model building. In recent years, active learning methods have become one of the best methods for sample selection. However, most active learning methods only select instances from prediction uncertainty or sample space distance, and these single-criteria methods tend to select undesired samples. In addition, sample density characterizes the spatial information carried by the sample, but few studies in quantitative analysis utilize sample density alone to select calibration samples. Considering these issues, based on the k-means clustering algorithm, this paper proposes an active learning sample selection method (DIDAL), which combines the three criteria of diversity, informativeness and sample density. The most representative sample is iteratively selected for - addition to the calibration set for modeling and estimating the chemical concentration of analytes. Soybean meal and soy sauce samples were analyzed by DIDAL and compared with existing sample selection methods. The prediction results show that the DIDAL algorithm significantly outperforms several existing algorithms and is close to the performance of full-sample modeling. A model with high prediction accuracy can be constructed by selecting only a few samples using the DIDAL method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.