Abstract
Phase-separated biomolecular condensates exhibit a wide range of dynamic properties, which depend on the sequences of the constituent proteins and RNAs. However, it is unclear to what extent condensate dynamics can be tuned without also changing the thermodynamic properties that govern phase separation. Using coarse-grained simulations of intrinsically disordered proteins, we show that the dynamics and thermodynamics of homopolymer condensates are strongly correlated, with increased condensate stability being coincident with low mobilities and high viscosities. We then apply an "active learning" strategy to identify heteropolymer sequences that break this correlation. This data-driven approach and accompanying analysis reveal how heterogeneous amino acid compositions and nonuniform sequence patterning map to a range of independently tunable dynamic and thermodynamic properties of biomolecular condensates. Our results highlight key molecular determinants governing the physical properties of biomolecular condensates and establish design rules for the development of stimuli-responsive biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.