Abstract

ABSTRACTCollection of training samples for remote sensing image classification is always time-consuming and expensive. In this context, active learning (AL) that aims at using limited training samples to achieve promising classification performances is developed. Recently, integration of spatial information into AL exhibits new potential for image classification. In this letter, an AL approach with two-stage spatial computation (AL-2SC) is proposed to improve the selection of training samples. The spatial features derived from remote sensing image and the probability outputs from the neighboring pixels are introduced in AL process. Moreover, we compare several AL approaches which take spatial information into account. In experiments, random sampling (RS) and four AL methods, including AL using breaking ties heuristic (BT), AL with spatial feature (AL-SF), AL with neighbouring responses (AL-NR), and AL-2SC, are considered. Three remote sensing datasets, including one hyperspectral and two multispectral images, are used to compare the performance of different methods. It is illustrated that, the utilization of spatial information is very important for the improvement of AL performance, and the proposed AL-2SC shows the most satisfactory result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call