Abstract
Regression problems are pervasive in real-world applications. Generally a substantial amount of labeled samples are needed to build a regression model with good generalization ability. However, many times it is relatively easy to collect a large number of unlabeled samples, but time-consuming or expensive to label them. Active learning for regression (ALR) is a methodology to reduce the number of labeled samples, by selecting the most beneficial ones to label, instead of random selection. This paper proposes two new ALR approaches based on greedy sampling (GS). The first approach (GSy) selects new samples to increase the diversity in the output space, and the second (iGS) selects new samples to increase the diversity in both input and output spaces. Extensive experiments on 10 UCI and CMU StatLib datasets from various domains, and on 15 subjects on EEG-based driver drowsiness estimation, verified their effectiveness and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.