Abstract

The problem of large-scale online matrix completion is addressed via a Bayesian approach. The proposed method learns a factor analysis (FA) model for large matrices, based on a small number of observed matrix elements, and leverages the statistical model to actively select which new matrix entries/observations would be most informative if they could be acquired, to improve the model; the model inference and active learning are performed in an online setting. In the context of online learning, a greedy, fast and provably near-optimal algorithm is employed to sequentially maximize the mutual information between past and future observations, taking advantage of submodularity properties. Additionally, a simpler procedure, which directly uses the posterior parameters learned by the Bayesian approach, is shown to achieve slightly lower estimation quality, with far less computational effort. Inference is performed using a computationally efficient online variational Bayes (VB) procedure. Competitive results are obtained in a very large collaborative filtering problem, namely the Yahoo! Music ratings dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.