Abstract

The road congestion pricing policy is implemented to alleviate traffic congestion and improve the efficiency of the transportation system during peak hours. However, the negative land use effect caused by this policy could not be ignored. How to design the optimal congestion toll that can not only ensure its positive effect on the transportation system but also reduce its negative effect on land use is an urgent problem to be solved. Given this, this paper proposed a multi-objective bi-level programming road congestion pricing model based on the integrated land use and transportation model to optimize the regional average accessibility, regional average land use diversity, and regional total flow time. Since the proposed problem is NP-hard, this paper innovatively proposed an active learning optimization algorithm based on multi-objective Bayesian optimization, which improves the computation efficiency of the bi-level programming model by automatically finding the next sampling point (candidate solution) according to the probability information. An empirical analysis of Jiangyin City demonstrated the effectiveness of the proposed approach in coordinating the relationship between land use and transportation and alleviating the negative land use effect caused by road congestion pricing. Moreover, the algorithm proposed in this paper can also be used to solve other transportation-related black box problems with high computation complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call