Abstract
We study active learning (AL) based on gaussian processes (GPs) for efficiently enumerating all of the local minimum solutions of a black-box function. This problem is challenging because local solutions are characterized by their zero gradient and positive-definite Hessian properties, but those derivatives cannot be directly observed. We propose a new AL method in which the input points are sequentially selected such that the confidence intervals of the GP derivatives are effectively updated for enumerating local minimum solutions. We theoretically analyze the proposed method and demonstrate its usefulness through numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.