Abstract

Active machine learning is widely used in computational studies where repeated numerical simulations can be conducted on high performance computers without human intervention. But translation of these active learning methods to physical systems has proven more difficult and the accelerated pace of discoveries aided by these methods remains as yet unrealized. Through the presentation of a general active learning framework and its application to large-scale boundary layer wind tunnel experiments, we demonstrate that the active learning framework used so successfully in computational studies is directly applicable to the investigation of physical experimental systems and the corresponding improvements in the rate of discovery can be transformative. We specifically show that, for our wind tunnel experiments, we are able to achieve in approximately 300 experiments a learning objective that would be impossible using traditional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.