Abstract
It is common to think of a "learner model" as a global description of a student's understanding of domain content. We propose a notion of learner model where the emphasis is on the modelling process rather than the global description. In this re-formulation there is no one single learner model in the traditional sense, but a virtual infinity of potential models, computed "just in time" about one or more individuals by a particular computational agent to the breadth and depth needed for a specific purpose. Learner models are thus fragmented, relativized, local, and often shallow. Moreover, social aspects of the learner are perhaps as important as content knowledge. We explore the implications of fragmented learner models, drawing examples from two collaborative learning systems. The main argument is that in distributed support environments that will be characteristic of tomorrow's ITSs, it will be literally impossible to speak of a learner model as a single distinct entity. Rather "learner model" will be considered in its verb sense to be an action that is computed as needed during learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.