Abstract

We consider active leakage power dissipation in FPGAs and present a no cost approach for active leakage reduction. It is well-known that the leakage power consumed by a digital CMOS circuit depends strongly on the state of its inputs. Our leakage reduction technique leverages a fundamental property of basic FPGA logic elements (look-up-tables) that allows a logic signal in an FPGA design to be interchanged with its complemented form without any area or delay penalty. We apply this property to select polarities for logic signals so that FPGA hardware structures spend the majority of time in low leakage states. In an experimental study, we optimize active leakage power in circuits mapped into a state-of-the-art 90nm commercial FPGA. Results show that the proposed approach reduces active leakage by 25%, on average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.