Abstract

In this study, a full-scale rail vehicle model is used to investigate how lateral ride comfort is influenced by implementing the H ∞ and sky-hook damping control strategies. Simulations show that significant ride comfort improvements can be achieved on straight track with both control strategies compared with a passive system. In curves, it is beneficial to add a carbody centring Hold-Off Device (HOD) to reduce large spring deflections and hence to minimise the risk of bumpstop contact. In curve transitions, the relative lateral displacement between carbody and bogie is reduced by the concept of H ∞ control in combination with the HOD. However, the corresponding concept with sky-hook damping degrades the effect of the carbody centring function. Moreover, it is shown that lateral and yaw mode separation is a way to further improve the performance of the studied control strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call