Abstract
Rodents use whisking to probe actively their environment and to locate objects in space, hence providing a paradigmatic biological example of active sensing. Numerous studies show that the control of whisking has anticipatory aspects. For example, rodents target their whisker protraction to the distance at which they expect objects, rather than just reacting fast to contacts with unexpected objects. Here we characterize the anticipatory control of whisking in rodents as an active inference process. In this perspective, the rodent is endowed with a prior belief that it will touch something at the end of the whisker protraction, and it continuously modulates its whisking amplitude to minimize (proprioceptive and somatosensory) prediction errors arising from an unexpected whisker–object contact, or from a lack of an expected contact. We will use the model to qualitatively reproduce key empirical findings about the ways rodents modulate their whisker amplitude during exploration and the scanning of (expected or unexpected) objects. Furthermore, we will discuss how the components of active inference model can in principle map to the neurobiological circuits of rodent whisking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.