Abstract

BackgroundT cells have been implicated in neuropathic pain that is caused by peripheral nerve injury. Immunogenic myelin basic protein (MBP) peptides have been shown to initiate mechanical allodynia in a T cell-dependent manner. Antagonistic altered peptide ligands (APLs) are peptides with substitutions in amino acid residues at T cell receptor contact sites and can inhibit T cell function and modulate inflammatory responses. In the present study, we studied the effects of immunization with MBP-derived APL on pain behavior and neuroinflammation in an animal model of peripheral nerve injury.MethodsLewis rats were immunized subcutaneously at the base of the tail with either a weakly encephalitogenic peptide of MBP (cyclo-MBP87-99) or APL (cyclo-(87-99)[A91,A96]MBP87-99) in complete Freund’s adjuvant (CFA) or CFA only (control), following chronic constriction injury (CCI) of the left sciatic nerve. Pain hypersensitivity was tested by measurements of paw withdrawal threshold to mechanical stimuli, regulatory T cells in spleen and lymph nodes were analyzed by flow cytometry, and immune cell infiltration into the nervous system was assessed by immunohistochemistry (days 10 and 30 post-CCI). Cytokines were measured in serum and nervous tissue of nerve-injured rats (day 10 post-CCI).ResultsRats immunized with the APL cyclo-(87-99)[A91,A96]MBP87-99 had significantly reduced mechanical pain hypersensitivity in the ipsilateral hindpaw compared to cyclo-MBP87-99-treated and control rats. This was associated with significantly decreased infiltration of T cells and ED1+ macrophages in the injured nerve of APL-treated animals. The percentage of anti-inflammatory (M2) macrophages was significantly upregulated in the APL-treated rats on day 30 post-CCI. Compared to the control rats, microglial activation in the ipsilateral lumbar spinal cord was significantly increased in the MBP-treated rats, but was not altered in the rats immunized with the MBP-derived APL. In addition, immunization with the APL significantly increased splenic regulatory T cells. Several cytokines were significantly altered after CCI, but no significant difference was observed between the APL-treated and control rats.ConclusionsThese results suggest that immune deviation by active immunization with a non-encephalitogenic MBP-derived APL mediates an analgesic effect in animals with peripheral nerve injury. Thus, T cell immunomodulation warrants further investigation as a possible therapeutic strategy for the treatment of peripheral neuropathic pain.

Highlights

  • T cells have been implicated in neuropathic pain that is caused by peripheral nerve injury

  • Immunization with cyclo-(87-99)[A9, 1A96]MBP87-99 significantly decreased mechanical allodynia in the ipsilateral hindpaw of the nerve-injured rats To investigate the effects of immunization with myelinderived altered peptide ligand (APL) on pain hypersensitivity, we carried out constriction injury (CCI) of the sciatic nerve followed by immunization with MBP87-99, APL cyclo-(87-99)[A9, 1A96] MBP87-99, and complete Freund’s adjuvant (CFA) only

  • The animals immunized with the myelin basic protein (MBP)-derived APL demonstrated significantly decreased mechanical pain hypersensitivity in the left hindpaw compared to the MBP-treated and CFA-treated rats starting from day 6 until day 24 post-CCI (Figure 2A), with the most significant difference observed on days 8 (P < 0.001), 10 (P < 0.01), 20 (P < 0.0001), and 23 (P < 0.01) post-CCI

Read more

Summary

Introduction

T cells have been implicated in neuropathic pain that is caused by peripheral nerve injury. We studied the effects of immunization with MBP-derived APL on pain behavior and neuroinflammation in an animal model of peripheral nerve injury. Peripheral nerve injury often results in neuropathic pain, a chronic debilitating condition that adversely affects the quality of life of sufferers. It is characterized by spontaneous pain and stimulus-evoked pain, including allodynia (pain due to a stimulus which does not normally provoke pain) and hyperalgesia (an increased response to a stimulus which is normally painful) [1]. Expansion of immunosuppressive Treg cells by treatment with CD28 superagonist decreased, whereas suppression of Treg cells by anti-CD25 antibody treatment increased mechanical allodynia following peripheral nerve injury [13]. Modulation of the T cell immune response in the nervous system may be useful in the management of chronic neuropathic pain

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call