Abstract

Retroviral proteins are synthesized as polyprotein precursors that undergo proteolytic cleavages to yield the mature viral proteins. The role of the human immunodeficiency virus (HIV) protease in the viral replication cycle was examined by use of a site-directed mutation in the protease gene. The HIV protease gene product was expressed in Escherichia coli and observed to cleave HIV gag p55 to gag p24 and gag p17 in vitro. Substitution of aspartic acid residue 25 (Asp-25) of this protein with an asparagine residue did not affect the expression of the protein, but it eliminated detectable in vitro proteolytic activity against HIV gag p55. A mutant HIV provirus was constructed that contained the Asn-25 mutation within the protease gene. SW480 human colon carcinoma cells transfected with the Asn-25 mutant proviral DNA produced virions that contained gag p55 but not gag p24, whereas virions from cells transfected with the wild-type DNA contained both gag p55 and gag p24. The mutant virions were not able to infect MT-4 lymphoid cells. In contrast, these cells were highly sensitive to infection by the wild-type virions. These results demonstrate that the HIV protease is an essential viral enzyme and, consequently, an attractive target for anti-HIV drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.