Abstract

Although neglected in the past, the interest on Zika virus (ZIKV) raised dramatically in the last several years. The rapid spread of the virus in Latin America and the association of the infection with microcephaly in newborns or Guillain-Barré Syndrome in adults prompted the WHO to declare the ZIKV epidemic to be an international public health emergency in 2016. As the virus gained only limited attention in the past, investigations on interactions of ZIKV with human complement are limited. This prompted us to investigate the stability of the virus to human complement. At low serum concentrations (10%) which refers to complement concentrations found on mucosal surfaces, the virus was relatively stable at 37°C, while at high complement levels (50% serum concentration) ZIKV titers were dramatically reduced, although the virus remained infectious for about 4–5 min under these conditions. The classical pathway was identified as the main actor of complement activation driven by IgM antibodies. In addition, direct binding of C1q to both envelope and NS1 proteins was observed. Formation of the MAC on the viral surface and thus complement-mediated lysis and not opsonization seems to be essential for the reduction of viral titers.

Highlights

  • Within the genus Flavivirus, several members were identified as human pathogens including dengue (DEN), Japanese encephalitis (JE), tick-born encephalitis (TBE), WestNile, (WN), yellow fever (YF) and Zika (ZIK) viruses [1]

  • Our study focused on the anti-viral activity of Normal human serum (NHS) and identified the complement system as an immediate innate immune response against Zika virus (ZIKV)

  • The ZIKV neutralization assays with NHS in the presence of C1 esterase inhibitor (C1-INH) indicated that the classical complement pathway is triggered

Read more

Summary

Introduction

Within the genus Flavivirus (family Flaviviridae), several members were identified as human pathogens including dengue (DEN), Japanese encephalitis (JE), tick-born encephalitis (TBE), WestNile, (WN), yellow fever (YF) and Zika (ZIK) viruses [1]. The main route of infections is mediated by arthropods such as mosquitoes or ticks [2, 3]. Two flavivirus proteins are characterized as main participants in interactions with the immune system. The E protein binds to the cell surface and mediates fusion after endocytic virus uptake. The majority of the neutralizing antibody responses is directed against the E protein. NS1 functions as regulator of viral transcription and has been shown to antagonize the anti-viral immune response by interfering

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.