Abstract
Microprocessor voltage levels traditionally include substantial margin to ensure reliable operation despite variations in manufacturing, workload, and environmental parameters. This margin allows the microprocessor to function correctly during worst-case conditions, but during typical operation it is larger than necessary and wastes energy. The authors present a mechanism that reduces excess voltage margin by introducing a critical-path monitor (CPM) circuit that measures available timing margin in real time; coupling the CPM output to the clock generation circuit to rapidly adjust clock frequency in response to excess or inadequate timing margin; and adjusting the processor voltage level periodically in firmware to achieve a specified average clock frequency target. They first demonstrated this mechanism in an IBM Power7 server and proved its effectiveness in the Power7+ product. Power consumption on the VDD rail was reduced by 11 percent for SPEC CPU2006 workloads with negligible performance loss yet increased protection against noise events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.