Abstract
Inspired by recent experimental observations of patterning at the membrane of a living cell, we propose a generic model for the dynamics of a fluctuating interface driven by particlelike inclusions which stimulate its growth. We find that the coupling between interfacial and inclusions dynamics yields microphase separation and the self-organization of traveling waves. These patterns are strikingly similar to those detected in experiments on biological membranes. Our results further show that the active growth kinetics do not fall into the Kardar-Parisi-Zhang universality class for growing interfaces, displaying instead a novel superposition of scaling and sustained oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.