Abstract

This paper reviews recent advances in graphene active plasmonics for terahertz (THz) device applications. Two-dimensional plasmons in graphene exhibit unique optoelectronic properties and mediate extraordinary light–matter interactions. It has been discovered theoretically that when the population of Dirac fermionic carriers in graphene are inverted by optical or electrical pumping, the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned into a micro- or nanoribbon array by grating metallization, the structure acts as an active THz plasmonic amplifier, providing a superradiant plasmonic lasing with a giant gain at the plasmon modes in a wide THz frequency range. These new findings can lead to the creation of new types of plasmonic THz emitters and lasers operating even at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.