Abstract
Planning in finite stochastic environments is canonically posed as a Markov decision process where the transition and reward structures are explicitly known. Reinforcement learning (RL) lifts the explicitness assumption by working with sampling models instead. Further, with the advent of reward machines, we can relax the Markovian assumption on the reward. Angluin's active grammatical inference algorithm L* has found novel application in explicating reward machines for non-Markovian RL. We propose maintaining the assumption of explicit transition dynamics, but with an implicit non-Markovian reward signal, which must be inferred from experiments. We call this setting non-Markovian planning, as opposed to non-Markovian RL. The proposed approach leverages L* to explicate an automaton structure for the underlying planning objective. We exploit the environment model to learn an automaton faster and integrate it with value iteration to accelerate the planning. We compare against recent non-Markovian RL solutions which leverage grammatical inference, and establish complexity results that illustrate the difference in runtime between grammatical inference in planning and RL settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.