Abstract

This paper is concerned with the adaptive backstepping control problem for a cloud-aided nonlinear active full-vehicle suspension system. A novel model for a nonlinear active suspension system is established, in which uncertain parameters, unknown friction forces, nonlinear springs and dampers, and performance requirements are considered simultaneously. In order to deal with the nonlinear characteristics, a backstepping control strategy is developed. Meanwhile, an adaptive control strategy is proposed to handle the uncertain parameters and unknown friction forces. In the cloud-aided vehicle suspension system framework, the adaptive backstepping controller is updated in a remote cloud based on the cloud storing information, such as road information, vehicle suspension information, and reference trajectories. Finally, simulation results for a full vehicle with 7-degree of freedom model are provided to demonstrate the effectiveness of the proposed control scheme, and it is shown that the addressed controller can improve the performances more than 80% compared with passive vehicle suspension systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.