Abstract

Certain snakes have antihemorrhagic proteins in their sera. Habu serum factor (HSF), an antihemorrhagic protein isolated from the serum of the Japanese habu snake ( Trimeresurus flavoviridis) is composed of two cystatin-like domains (D1 and D2) and a His-rich domain, and it inhibits several snake venom metalloproteinases (SVMPs). The activity of HSF can be abolished by trinitrophenylation of Lys residues with 2,4,6-trinitrobenzene sulphonic acid. Upon complex formation of HSF with SVMP, however, the loss of its inhibitory activity by the chemical modification was suppressed, and Lys 15, Lys 41, and Lys 103 residues in HSF were not trinitrophenylated. In order to identify the domain that is critical to the inhibitory activity on SVMPs, native HSF was digested with papain followed by cleavage with cyanogen bromide, yielding a low-molecular mass fragment that was composed of two peptide chains (residues 5–89 and 312–317) linked by a disulfide bond. This fragment inhibited several SVMPs and showed significant antihemorrhagic activity. This indicates that the N-terminal half of D1 is indispensable for the antihemorrhagic activity of HSF. Furthermore, a three-dimensional model of two cystatin-like domains constructed by the homology modeling has indicated that three Lys residues (15, 41, and 103) are exposed to the same surface of HSF molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.