Abstract

CK2 is a protein kinase essential for cell viability whose activity is altered in several cancers. Its mechanisms of regulation differ from those common to other eukaryotic protein kinases and are not entirely established yet. Here we present crystal structures of the monomeric form of the α2β2 holoenzyme that allow refining a formerly proposed structural model for activity regulation by oligomerization. Previous crystal structures of the CK2 holoenzyme show an asymmetric arrangement of the two α catalytic subunits around the obligate β2 regulatory subunits. Asymmetric α2β2 tetramers are organized in trimeric rings that correspond to inactive forms of the enzyme. The new crystal structures presented here reveal the symmetric architecture of the isolated active tetramers. The dimension and the nature of the α/β interfaces configure the holoenzyme as a strong complex that does not spontaneously dissociate in solution, in accordance with the low dissociation constant (∼4 nM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.