Abstract

A novel neuroprotective peptide, Humanin (HN), has a strong tendency to aggregate in phosphate-buffered saline. Here we attempted to reduce aggregation employing an aqueous phosphate solution, without NaCl, at pH 6.0 and low peptide concentrations wherever possible. Such a condition, though not fully physiological, allowed us to determine the secondary structure and molecular weight of the peptides. Comparison of a parent HN peptide, an inactive analog (S7A-HN) and a 1000-fold more active analog (S14G-HN) showed no apparent differences in the secondary structure. These peptides were all disordered over the wide range of peptide concentration. Sedimentation analysis was done only for HN and S7A-HN and showed aggregation into soluble oligomers in 20 mM phosphate at pH 6.0. Aggregation was greatly suppressed in 5 mM phosphate at the same pH in terms of aggregate size, with the formation of smaller oligomers. Sedimentation velocity experiments at 60,000 rpm in 5 mM phosphate at pH 6.0 showed that both HN and S7A-HN distributed into soluble aggregates that sedimented to the bottom of the cell and low molecular weight species that approached sedimentation equilibrium. The mass of this low molecular weight species was determined by sedimentation equilibrium to be close to monomers for both peptides. Thus, these results clearly demonstrate that the active HN and inactive S7A-HN are identical in structure and hence there is no apparent correlation between solution structure and biological activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.