Abstract

Eigenspace (ES) and Linear Quadratic (LQ) techniques are used to design an active flutter suppression system for the DAST ARW-2 flight test vehicle. The performance of the ES and LQ controllers are very similar in meeting control surface activity specifications. The ES controller provides reduced wing root bending moment and shear but torsional stress is slightly higher than with the LQ controller. The ES controller also results in improved flutter boundaries compared with the LQ controller. The LQ controller exhibits significantly better phase margins at the flutter condition than does the ES controller but the LQ design requires large feedback gains on actuator states while the ES does not. This results in reduced overall actuator gain for the LQ design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.