Abstract

In this paper, by using the piezoelectric material, the active aeroelastic flutter characteristics and vibration control of supersonic sandwich panels with different honeycomb interlayers, resting on an elastic foundation, are studied. Classical beam theory along with the Winkler–Pasternak foundation model, and the quasi-steady first order supersonic piston theory are employed in the formulation of the structural theory and aerodynamic loading, respectively. Hamilton's principle in conjunction with the generalized Fourier expansions and Rayleigh–Ritz (RR) method are used to develop the dynamical model of the structural systems in the state–space domain. The aeroelastic flutter bounds are obtained via the p-method. The classical Runge–Kutta integration algorithm is then used to calculate the open-loop aeroelastic response of the system under different loading excitations. Finally, two classical control strategies, including direct proportional feedback and linear-quadratic regulator (LQR) optimal control scheme, are used to actively suppress the closed loop system response, while increasing the flutter aerodynamic pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.