Abstract

In this article, active flutter and aerothermal postbuckling control of the nonlinear composite laminated panel with large deformation in supersonic airflow using the piezoelectric material are investigated. The distributed piezoelectric actuator and sensor pairs are bonded on the top and bottom surfaces of the laminated panel. The von Karman strain–displacement relation is used in the structural modeling. Unsteady aerodynamic pressure is evaluated by the supersonic piston theory. Hamilton’s principle and the assumed mode method are applied to formulate the equation of motion of the structural system. A discrete linear-quadratic-Gaussian controller is designed in this study to conduct the active flutter and postbuckling control. The proportional feedback control method is also applied in designing the controller. Time domain responses of the structural system are computed using the Runge–Kutta method. The control effects of the two control methods are compared. The influences of the placements of the piezoelectric actuator and sensor pairs on the control effects are also investigated. This study is helpful for the active aeroelastic design of the nonlinear structural system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.