Abstract

An active separation control experiment was conducted in a cryogenic pressurized wind tunnel on a wall-mounted bump at chord Reynolds numbers from 2.4 x 10 6 to 26 x 106 and a Mach number of 0.25. The model simulates the upper surface of a 20% thick Glauert-Goldschmied-type airfoil at zero incidence. The turbulent boundary layer of the tunnel sidewall flows over the model and eliminates laminar-turbulent transition from the problem. Indeed, the Reynolds number either based on the chord or boundary-layer thickness had a negligible effect on the flow and its control. Without control, a large turbulent separation bubble is formed at the lee side of the model. Periodic excitation and steady suction or blowing were applied to eliminate gradually the separation bubble. Detailed effects due to variations in the excitation frequency, amplitude, and the steady mass flux are described and compared to those of steady suction or blowing

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call