Abstract
The paper presents mid-span measurements for a turbine cascade with active flow control. Steady blowing through an inclined plane wall jet has been used to control the separation characteristics of a high-lift low-pressure turbine airfoil at low Reynolds numbers. Measurements were made at design incidence for blowing ratios from approximately 0.25 to 2.0 (ratio of jet-to-local freestream velocity), for Reynolds numbers of 25,000 and 50,000 (based on axial chord and inlet velocity), and for freestream turbulence intensities of 0.4% and 4%. Detailed flow field measurements were made downstream of the cascade using a three-hole pressure probe, static pressure distributions were measured on the airfoil suction surface, and hot-wire measurements were made to characterize the interaction between the wall jet and boundary layer. The primary focus of the study is on the low-Reynolds number and low-freestream turbulence intensity cases, where the baseline airfoil stalls and high profile losses result. For low freestream turbulence (0.4%), the examined method of flow control was effective at preventing stall and reducing the profile losses. At a Reynolds number of 25,000, a blowing ratio greater than 1.0 was required to suppress stall. At a Reynolds number of 50,000, a closed separation bubble formed at a very low blowing ratio (0.25) resulting in a significant reduction in the profile loss. For high freestream turbulence intensity (4%), where the baseline airfoil has a closed separation bubble and low profile losses, blowing ratios below 1.0 resulted in a larger separation bubble and higher losses. The mechanism by which the wall jet affects the separation characteristics of the airfoil is examined through hot-wire traverse measurements in the vicinity of the slot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.