Abstract
Bioelectrical surface recordings are usually performed by unipolar or bipolar disc electrodes even though they entail the serious disadvantage of having poor spatial resolution. Concentric ring electrodes give improved spatial resolution, although this type of electrode has so far only been implemented in rigid substrates and as they are not adapted to the curvature of the recording surface may provide discomfort to the patient. Moreover, the signals recorded by these electrodes are usually lower in amplitude than conventional disc electrodes. The aim of this work was thus to develop and test a new modular active sensor made up of concentric ring electrodes printed on a flexible substrate by thick-film technology together with a reusable battery-powered signal-conditioning circuit. Simultaneous ECG recording with both flexible and rigid concentric ring electrodes was carried out on ten healthy volunteers at rest and in motion. The results show that flexible concentric ring electrodes not only present lower skin–electrode contact impedance and lower baseline wander than rigid electrodes but are also less sensitive to interference and motion artefacts. We believe these electrodes, which allow bioelectric signals to be acquired non-invasively with better spatial resolution than conventional disc electrodes, to be a step forward in the development of new monitoring systems based on Laplacian potential recordings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.