Abstract

Active noise control (ANC) of headsets is revisited in this paper. An in-depth electroacoustic analysis of the combined loudspeaker-cavity headset system is conducted on the basis of electro-mechano-acoustical analogous circuits. Model matching of the primary path and the secondary path leads to a feedforward control architecture. The ideal controller sheds some light on the key parameters that affect the noise reduction performance. Filtered-X least-mean-squares algorithm is employed to implement the feedforward controller on a digital signal processor. Since the relative delay of the primary path and the secondary path is crucial to the noise reduction performance, multirate signal processing with polyphase implementation is utilized to minimize the effective analog-digital conversion delay in the secondary path. Ad hoc decimation and interpolation filters are designed in order not to introduce excessive phase delays at the cutoff. Real-time experiments are undertaken to validate the implemented ANC system. Listening tests are also conducted to compare the fixed controller and the adaptive controller in terms of noise reduction and signal tracking performance for three noise types. The results have demonstrated that the fixed feedforward controller achieved satisfactory noise reduction performance and signal tracking quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.