Abstract

Convergence of the Africa, Arabia, and Eurasia plates and the westward escape of Anatolia have resulted in an evolving plate boundary zone in the Eastern Mediterranean. e current location and nature of the plate boundary between the Anatolian and the African plate is di cult to trace due to the scattered crustal earthquakes and the absence of deep ones. We examine various types and locations for the plate boundary as constrained by seismicity, seismic re ection studies, tomographic studies, and geodetic measurements and we use a spherical plane stress nite element model to test these possibilities. In our regional model, we impose the convergence of Africa, Arabia, and stable Eurasia by applying GPS-derived velocities in the far- eld, as well as the roll-back of the Hellenic trench to solve for regional deformation. Model velocity and stress elds are compared with GPS-derived velocities and stress directions from focal mechanism solutions. We nd that the plate boundary via the Pliny and Strabo trenches, the Anaximander Mountains, the Eratosthenes Seamount collisional segment, and the Latakia-Larnaka ridges gives the best t to the data. e Anaximander Mountains plate boundary has both down-dip and strike-slip motions, and the Latakia segment is pure strike-slip. e Cyprus subduction contact is 42% locked. From a combined analysis of indicators for long-term deformation (predominantly slip-rates on major faults) and model results we infer that this southern plate boundary con guration may have existed since the Late Pliocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call