Abstract

Switching Linear Dynamic Systems are convenient models for systems that exhibit both continuous dynamics and discrete mode changes. Estimating the hybrid discrete-continuous state of these systems is important for control and fault detection. Existing solutions for hybrid estimation approximate the belief state by maintaining a subset of the possible discrete mode sequences. This approximation can cause the estimator to lose track of the true mode sequence when the effects of discrete mode changes are subtle. In this paper we present a method for active hybrid estimation, where control inputs can be designed to discriminate between possible mode sequences. By probing the system for the purposes of estimation, such a sequence of control inputs can greatly reduce the probability of losing the true mode sequence compared to a nominal control sequence. Furthermore, by using a constrained finite horizon optimization formulation, we are able to guarantee that a given control task is achieved, while optimally detecting the hybrid state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.