Abstract
AbstractDual active bridge (DAB) is an isolated DC‐DC converter gaining wider attention in power electronics applications. The high frequency (HF) transformer is an integral part of the DAB which is prone to saturation. Silicon carbide (SiC) based DAB are generally preferred for highly efficient power conversions, calling for an extremely low DC resistance of the transformer. This aggravates the DC bias issue significantly. The DC bias current generally flows due to the mismatch in static and transient switching of active devices, leading to eventual saturation of the transformer. This paper proposes an active method to precisely control the dead time of the devices (8–100 ns) without sacrificing the voltage utilization of the converter. This method does not require a sophisticated DC offset current measurement technique. The field programmable gate array (FPGA) based control platform on the gate driver side executes the proposed algorithm. The proposed control is experimentally verified in a 5 kW SiC based converter. The control implementation methodology is discussed with the support of necessary experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.