Abstract

In recent years, supercapacitors have received considerable research attention for energy storage systems due to their high-power density, fast charge-discharge processes, and long cycle life. The superior performance of supercapacitors is considerably dependent on the electrode materials. Among electrode materials, graphene balls (GBs) and their composites have recently attracted strong interest. They are considered ideal for the fabrication of electrode materials because of their unique characteristics of large specific surface area and superior electric conductivity, which should make them very effective for use in supercapacitors. In particular, GBs and their microstructured composites have recently been proven promising candidates for supercapacitor electrodes. Their unique 3D morphology provides highly porous graphene structures for decoration with active materials. In this perspective, recent studies were highlighted and discussed that focus on GBs and their composites for the potential energy storage devices called supercapacitors, (i.e., electric double layer capacitors and pseudocapacitors).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.