Abstract
In this paper, a control strategy is proposed to improve the tracking performance of the lower limb exoskeleton (LLE). The proposed active disturbance rejection control (ADRC) with fast terminal sliding mode control (FTSMC) can not only alleviate the disturbance but also converge to a bounded region fast. Based on the robotics analysis, a dynamic model for the LLE was established. To achieve decoupling control for a coupled system, the virtual control input was introduced, where the system uncertainty and external disturbances were regarded as lumped disturbances. To validate the feasibility of the proposed control strategy, the simulations and experiments were both carried out. The numerical simulation results were shown that the proposed control strategy and ADRC can remarkably reduce the chattering phenomena, which is owing to the estimation ability of extended state observer (ESO). Both the simulations and the experiments results were shown that this strategy was better than the conventional proportional-integral-derivative (PID) and ADRC in terms of tracking performance. With the proposed ADRC-FTSMC, the LLE system can achieve higher tracking precision and faster response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.