Abstract

Active disturbance rejection control (ADRC) is an efficient control technique to accommodate both internal uncertainties and external disturbances. In the typical ADRC framework, however, the design philosophy is to "force" the system dynamics into a double-integral form by an extended state observer (ESO) and then the controller is designed. Especially, the systems' physical structure has been neglected in such a design paradigm. In this article, a new ADRC framework is proposed by incorporating at a fundamental level the physical structure of the Euler-Lagrange (EL) systems. In particular, the differential feedback gain can be selected considerably small or even 0, due to the effective exploitation of the system's internal damping. The design principle stems from an analysis of the energy balance of EL systems, yielding a physically interpretable design. Moreover, the exploitation of the system's internal damping is thoroughly discussed, which is of practical significance for applications of the proposed design. Besides, a sliding-mode ESO is designed to improve the estimation performance over traditional linear ESO. Finally, the proposed control framework is illustrated through tracking control of an omnidirectional mobile robot. Extensive experimental tests are conducted to verify the proposed design as well as the discussions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.