Abstract
A mathematical model can be used to mimic a real chemical, physical, or biological system. However, the process of idealizing the complicated real world into a relatively simple form requires making a set of assumptions and ignoring model variation, parameter changes, external disturbances, and noise. Therefore, no model can completely represent a real situation or process. On the other hand, if model uncertainties, parameter changes, and external disturbances are treated collectively as a “total disturbance” that is then estimated and canceled, extensive knowledge of the controlled object will no longer be required. In other words, good control performance is able to be achieved without a precise mathematical model. With this as the aim, active disturbance rejection control (ADRC), a modelfree control, presented in this paper is used to estimate and actively reject the inherent dynamic and external disturbances. In particular, it is shown in this paper that ADRC works well in the face of a nonlinear, time-varying process such as the Chylla–Haase semibatch polymerization reactor. This is because the problem of precise temperature regulation in the polymerization process can be reformulated as the problem of total disturbance rejection. The numerical results show the stability and robustness of the proposed method and better overall performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.