Abstract
This paper presents an active disturbance rejection adaptive control scheme via full state feedback for motion control of hydraulic servo systems subjected to both parametric uncertainties and uncertain nonlinearities. The proposed controller is derived by effectively integrating adaptive control with extended state observer via backstepping method. The adaptive law is synthesized to handle parametric uncertainties and the remaining uncertainties are estimated by the extended state observer and then compensated in a feedforward way. The unique features of the proposed controller are that not only the matched uncertainties but also unmatched uncertainties are estimated by constructing two extended state observers, and the parameter adaptation law is driven by both tracking errors and state estimation errors. Since the majority of parametric uncertainties can be reduced by the parameter adaptation, the task of the extended state observer is much alleviated. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically achieves an asymptotic tracking performance in the presence of parametric uncertainties and constant disturbances. In addition, prescribed transient tracking performance and final tracking accuracy can also be guaranteed when existing time-variant uncertain nonlinearities. Comparative experimental results are obtained to verify the high tracking performance nature of the proposed control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.