Abstract

Understanding the intermolecular products of antibodies as a consequence of host-cell expression, aging, and heat-stress can be insightful especially when it involves the development of a stable biopharmaceutical product. The dimerized form of Epratuzumab (an IgG(1) antibody) with a molecular mass of approximately 300 kDa (twice the monomer antibody molecular weight of approximately 150 kDa) was examined to gain a better perspective of its properties pertaining to structure and activity. The nascent dimer was shown to partially dissociate upon incubation at 30 degrees C and 37 degrees C, exhibit no discernable alteration of structure (i.e., secondary or tertiary structure based on CD and 2nd derivative UV spectroscopy), have approximately 70% covalent forms (based upon CE-SDS results) and manifest twofold higher activity relative to the active monomer form (on a weight basis the dimer and monomer have equal activity). Interestingly, these properties were not attributed to a single dimer species, but rather to a more complex dimer assembly. The Epratuzumab dimer was digested with papain to reveal three uniquely dimerized aggregates. The relative molar distribution of Fab:Fab, Fc:Fc, and Fab:Fc was found to be 4:3:8, respectively. The data suggest that all three predominantly covalent dimer adducts are capable of full activity, shedding light on their complex nature and showing that their target specificity was unaltered. ESI-MS data indicated the presence of remnant levels of noncovalent dimers for all three dimerized forms. Material aged at 37 degrees C exhibited a similar papain digest molar distribution of the three dimerized forms, except with enhanced chemical heterogeneity and an increase in covalent forms to approximately 84%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.