Abstract

In this paper, faults, one of the most important causes of geohazards, were investigated from a kinematic and geometric viewpoint in the northern part of the Sistan suture zone (SSZ), which serves as the boundary between the Afghan and Lut blocks. Furthermore, field evidence was analyzed in order to assess the structural type and deformation mechanism of the research area. In the northern Birjand mountain range, several ~E–W striking faults cut through geological units; geometric and kinematic analyses of these faults indicate that almost all faults have main reverse components, which reveals the existing compressional stress in the study area. The northern Birjand mountain range is characterized by four main reverse faults with ~E–W striking: F1–F4. The F1 and F2 reverse faults have southward dips, while the F3 and F4 reverse faults have northward dips. Moreover, the lengths of the F1, F2, F3, and F4 faults are 31, 17, 8, and 38 km, respectively. These faults, with reverse components that have interactive relationships with each other, form high relief structures. The study area’s main reverse faults, including F1 to F4, are extensions of the Nehbandan fault system, while their kinematics and geometry in the northern Birjand mountain range point to an N–S pop-up structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.