Abstract

AbstractThe thermomechanical coupling in shape memory alloys (SMAs) provides an effective mechanism of vibration damping by a cyclic structural phase transition. Here, we present simulations for an active SMA damper device based on a polycrystalline film materials, in which active damping via the one‐way shape memory effect is exploited. We apply an extension of a previously reported superelastic model, that combines transition state kinetics with a phase field approach for the case of shock loading. By this approach, we are able to describe the time‐resolved active damping performance of the device in agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.