Abstract

This paper presents Parallel Hybrid Electric Vehicles (HEVs) powertrain design as well as a motor-based control approach that is designed to control or reduce driveline oscillations by introducing a Proportional-Integral-Derivative (PID) controller and a Fuzzy logic sliding mode controller. Because the torque of the electric motor can be decreased or increased more quickly than that of the Internal Combustion Engine (ICE), the vibration increases significantly. To solve this problem, an electric motor control-based Active Damping Control (ADC) strategy is employed to assure smooth driveline function and provide seamless driving experience for the driver. First, the basic level modeling of a hybrid electric powertrain in Ansys Simplorer environment is created and the performance was studied during the certification drive cycle. Thus, the main components of the powertrain– traction motor, battery and ICE – are researched, and basic models were built. The components were developed based on the Ansys software by using an automotive system level behavioral HEV library with VHDL-AMS language built in Ansys Simplorer environment. In addition, comparison of both controllers was presented. The simulation results show that using the ADC reduces more than 30 % of the driveline oscillations, thereby improving the drivability of HEVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call