Abstract
The use of active damping to reduce the total harmonic distortion (THD) of the line current for medium-voltage (2.3-7.2 kV) high-power pulsewidth-modulation (PWM) current-source rectifiers is investigated. The rectifier requires an LC filter connected at its input terminals, which constitutes an LC resonant mode. The lightly damped LC filter is prone to series and parallel resonances when tuned to a system harmonic either from the utility or from the PWM rectifier. These issues are traditionally addressed at the design stage by properly choosing the filter resonant frequency. This approach may result in a limited performance since the LC resonant frequency is a function of the power system impedance, which usually varies with power system operating conditions. In this paper, an active damping control method is proposed for the reduction in line current THD of high-power current-source rectifiers operating at a switching frequency of only 540 Hz. Two types of LC resonances are investigated: the parallel resonance excited by harmonic currents drawn by the rectifier and the series resonance caused by harmonic pollution in the source voltage. It is demonstrated through simulation and experiments that the proposed active damping control can effectively reduce the line-current THD caused by both parallel and series resonances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Industrial Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.