Abstract

Fuel cells (FCs) are being considered as a potential alternative in long term to replace diesel/gasoline combustion engines in vehicles and emergency power sources. However, high cost and slow dynamic response of FC still persist as the main hurdles for wider applications. To remedy this problem, an energy storage system with adequate power capacity has to be incorporated. This paper presents a novel control design for FC-battery hybrid power system which enables both active current sharing and power source management control in such hybrid systems. Different hybrid power system structures are investigated and evaluated; dual-converter structure and four modes of operation are defined to provide efficient and sustainable solution to such a hybrid power system. A novel integrated control system with inherent current sharing and generation mode swapping capability is proposed; based on system component status, the control system is able to regulate the output power from each source under different scenarios. The dedicated control system is implemented in a TMS320F2812 DSP, and experimental results for an FC-battery-based uninterruptible power supply are provided to demonstrate the static and dynamic performance of the control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call