Abstract

Parallel connection of converters has become a popular method of improving efficiency. This study first presents a design technique for a buck converter with two parallelly connected power modules (PMs), where one PM is designed with large current ripple for high efficiency. This study then demonstrates an active current ripple cancellation technique, where the current waveform of the second PM is shaped to be the exact opposite to that in the first PM, to reduce the current ripple as seen by the output capacitor. The factors that affect the overall efficiency in a parallel connected converter and the calculation of the parameters that determine the effectiveness of the ripple cancellation are reported. A prototype parallel converter is designed based on the proposed converter design technique and the current ripple seen by the output capacitor is successfully reduced by 66% with the proposed ripple cancellation technique, under different line and load conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.