Abstract

The paper is devoted to the development of active coolers for central processing units (CPU) of desktop computers on the basis of copper–water loop heat pipes (LHP). It presents descriptions of designs and test results for two cooler models containing flat evaporators and condensers of the collector type equipped with a heat sink (radiator). Heat was removed from the radiators by forced convection. It is shown that the maximum heat-transfer capacity of the coolers was 500–600 W. Minimum values of the total thermal resistance of the coolers were equal to 0.15–0.17 °С/W at heat loads of 500 and 250 W, respectively. On the basis of an analysis of distribution of local thermal resistances it has been concluded that additional decrease in the thermal resistance required for cooling a CPU with a generated thermal capacity in excess of 150 W can be achieved at the cost of optimization of radiator design and (or) an increase in the intensity of its cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.