Abstract
Considering the influence of slow response characteristic of a high-power proton exchange membrane fuel cell (PEMFC) on a grid-connected system adequately, a 150 kW PEMFC grid-connected system, including a PEMFC power unit based on a Ballard Stack Modules-FCvelocity™ HD6 is developed in this study. Moreover, then an active control strategy with vector-proportion integration controller is proposed to regulate the cascade system actively and improve the performance of compensating low-order harmonics. The comparisons with conventional active/reactive power (PQ) control are carried out to verify the validity of the proposed method under different conditional tests. The results demonstrate that the proposed strategy can not only track the grid power demand quickly, but also prevent the unsteady phenomena which are aroused by PQ control method from the relatively slow response of high-power PEMFC power unit. Furthermore, the total harmonic distortion of grid-connected current is measured by means of the criterion of IEEE Std1547-2003 and the result of fast Fourier transform analysis testifies that the proposed strategy can decrease the total harmonic content of currents better. Therefore, this proposed method will be an optional effective technique for the design of advanced high-power PEMFC grid-connected control system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.