Abstract

Two types of Gemini surfactants containing a disulfide bond in the spacer, sodium dilauroyl cystine (SDLC) and sodium didecamino cystine (SDDC), were synthesized, and their surface properties and aggregation behavior in aqueous solution were studied by means of surface tension measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence. During the transition of the Gemini surfactants to their corresponding monomers through the reduction of disulfide bonds, the surface tensions of their aqueous solutions, as well as their aggregation behavior, changed greatly. The reduction of SDLC and SDDC led to disruption of the vesicle, and the oxidation of corresponding monomers to Gemini surfactants led to vesicle re-formation. These results demonstrated the control of surface properties and aggregation behavior by the reversible transition between the Gemini surfactant and its monomer via reduction/oxidation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.