Abstract

We demonstrate that a three-terminal potentiostat circuit reduces the coupling between an electronic excitation transfer (EET) system and its environment, by applying a low-noise voltage to its electrical terminals. Inter-state interference is preserved in the EET system by attenuating the dissipation in the quantum system arising from coupling to the surrounding thermodynamic bath. A classical equivalent circuit is introduced to model the environment-coupled excitation transfer for a simplified, two-state system. This model provides a qualitative insight into how the electronic feedback affects the transition probabilities and selectively reduces dissipative coupling for one of the participant energy levels EET system. Furthermore, we show that the negative feedback also constrains r.m.s. fluctuations of the energy of environmental vibrational states, resulting in persistent spectral coherence between the decoupled state and vibronic levels of the complementary state. The decoupled vibronic channel therefore can serve as a probe for characterizing the vibronic structure of the complementary channel of the EET system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.