Abstract
Large-eddy simulations of incompressible turbulent boundary layer flows over an open cavity are conducted to investigate the effects of wall-normal steady blowing on the suppression of pressure fluctuations on the cavity walls. The length (L) to depth (D) ratio (L/D) of the cavity is 2 and the Reynolds number based on the cavity depth (ReD) is 12,000. Wall-normal steady blowing is imposed through a limited transverse slot in an upstream region of the cavity leading edge while varying the momentum coefficient (Cμ). As the value of Cμ increases, the pressure fluctuations on the cavity walls decrease mostly due to weakened impingement of turbulent vortical structures residing in the shear layer on the aft wall by lifting effects, reaching a maximum reduction of −7.61% compared to a baseline when Cμ=0.015. However, as the value of Cμ increases further, the pressure fluctuations increase gradually, exceeding that of a baseline when Cμ>0.05. Because intensified turbulent vortical structures in the shear layer with an increase of Cμ lead to strong interactions of small-scale vortices with the cavity walls with an accompanying large motion of the primary recirculation zone within the cavity, additional pressure fluctuations generated on the cavity walls deteriorate the control performance due to the blowing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.